Fine-tune GPT with Line-by-Line Dataset

The latest training/fine-tuning language model tutorial by huggingface transformers can be found here: Transformers Language Model Training

There are three scripts: run_clm.py, run_mlm.py and run_plm.py. For GPT which is a causal language model, we should use run_clm.py. However, run_clm.py doesn't support line by line dataset. For each batch, the default behavior is to group the training examples into a single block_size line.

However, grouping text doesn't make sense for datasets whose lines are not related such as QA dataset:

Q1 [SEP] A1 Q2 [SEP] A2 ...

Concatenate them to: Q1 [SEP] A1 Q2 [SEP] A2 ... might mislead the language model.

Implement Line by Line Data Processing

The default data processing logic for run_clm.py:

# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
	# Concatenate all texts.
	concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
	total_length = len(concatenated_examples[list(examples.keys())[0]])
	# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
	# customize this part to your needs.
	if total_length >= block_size:
		total_length = (total_length // block_size) * block_size
	# Split by chunks of max_len.
	result = {
		k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
		for k, t in concatenated_examples.items()
	}
	result["labels"] = result["input_ids"].copy()
	return result

# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

with training_args.main_process_first(desc="grouping texts together"):
	lm_datasets = tokenized_datasets.map(
		group_texts,
		batched=True,
		num_proc=data_args.preprocessing_num_workers,
		load_from_cache_file=not data_args.overwrite_cache,
		desc=f"Grouping texts in chunks of {block_size}",
	)

Three ways to make the script run_clm.py read the dataset line by line:

  • Modify data collator (failed)
  • Modify tokenize function
  • Implement a new class LineByLineDataset like this

First we modify the tokenize function and make lm_datasets = tokenized_datasets:

def tokenize_function(examples):
	examples[text_column_name] = [line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()]
	tokens = tokenizer(
		examples[text_column_name],
		truncation=True,
		max_length=block_size,
	)
	tokens['labels'] = tokens['input_ids'].copy()
	return tokens

tokenized_datasets = raw_datasets.map(
	tokenize_function,
	batched=True,
	num_proc=data_args.preprocessing_num_workers,
	remove_columns=column_names,
	load_from_cache_file=not data_args.overwrite_cache,
	desc="Running tokenizer on dataset",
)

lm_datasets = tokenized_datasets

However, when running the script error happens:

Traceback (most recent call last): File "/home/user/gpt/run_finetunelinebyline.py", line 527, in <module> main() File "/home/user/gpt/run_finetunelinebyline.py", line 475, in main train_result = trainer.train(resume_from_checkpoint=checkpoint) File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/trainer.py", line 1290, in train for step, inputs in enumerate(epoch_iterator): File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 521, in next data = self._next_data() File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 561, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch return self.collate_fn(data) File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/data/data_collator.py", line 66, in default_data_collator return torch_default_data_collator(features) File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/data/data_collator.py", line 112, in torch_default_data_collator batch[k] = torch.tensor([f[k] for f in features]) ValueError: expected sequence of length 56 at dim 1 (got 46) 0%| | 0/1782 [00:00<?, ?it/s]

Print debug info:

logger.info("*** raw_datasets/tokenized_datasets " + str(raw_datasets['train'].shape) + " / " + str(tokenized_datasets['train'].shape))
logger.info("*** train_dataset shape: " + str(train_dataset[0].keys()) + "/" + str(train_dataset.shape) + "/" + str(len(train_dataset['input_ids'][0])))
for i in range(10):
	 logger.info (train_dataset[i])

Sample output:

11/11/2021 18:58:28 - INFO - main - *** raw_datasets/tokenized_datasets (9500, 1) / (9500, 4) 11/11/2021 18:58:29 - INFO - main - *** train_dataset shape: dict_keys(['attention_mask', 'input_ids', 'labels', 'token_type_ids'])/(9500, 4)/44 11/11/2021 18:58:29 - INFO - main - {'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'input_ids': [101, 100, 2146, 2357, 8108, 945, 3921, 1394, 1045, 2110, 1359, 4193, 2825, 3318, 1315, 2199, 7030, 772, 8024, 4685, 1068, 772, 1501, 9160, 2399, 100, 1355, 2357, 102, 8108, 945, 1359, 4193, 2825, 3318, 4685, 2496, 5543, 2802, 8024, 4669, 6629, 3341, 102], 'labels': [101, 100, 2146, 2357, 8108, 945, 3921, 1394, 1045, 2110, 1359, 4193, 2825, 3318, 1315, 2199, 7030, 772, 8024, 4685, 1068, 772, 1501, 9160, 2399, 100, 1355, 2357, 102, 8108, 945, 1359, 4193, 2825, 3318, 4685, 2496, 5543, 2802, 8024, 4669, 6629, 3341, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]} ...

It seems that the batch input is not padded. Then we create a data collator to reaplace the default_data_collator:

# Initialize our Trainer
collator = DataCollatorWithPadding(tokenizer, padding='max_length', max_length=block_size)
trainer = Trainer(
	model=model,
	args=training_args,
	train_dataset=train_dataset if training_args.do_train else None,
	eval_dataset=eval_dataset if training_args.do_eval else None,
	tokenizer=tokenizer,
	# Data collator will default to DataCollatorWithPadding, so we change it.
	data_collator=collator
)

Unfortunately, another error happened:

... ValueError: expected sequence of length 56 at dim 1 (got 46) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/user/gpt/run_finetunelinebyline.py", line 534, in <module> main() File "/home/user/gpt/run_finetunelinebyline.py", line 482, in main train_result = trainer.train(resume_from_checkpoint=checkpoint) File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/trainer.py", line 1290, in train for step, inputs in enumerate(epoch_iterator): File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 521, in next data = self._next_data() File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 561, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch return self.collate_fn(data) File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/data/data_collator.py", line 226, in call batch = self.tokenizer.pad( File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 2796, in pad return BatchEncoding(batch_outputs, tensor_type=return_tensors) File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 210, in init self.convert_to_tensors(tensor_type=tensor_type, prepend_batch_axis=prepend_batch_axis) File "/home/user/miniconda3/envs/trans/lib/python3.9/site-packages/transformers/tokenization_utils_base.py", line 721, in convert_to_tensors raise ValueError( ValueError: Unable to create tensor, you should probably activate truncation and/or padding with 'padding=True' 'truncation=True' to have batched tensors with the same length. 0%| | 0/1782 [00:00<?, ?it/s]

The padding doesn't work.

Finally, we borrow the logic from run_mlm.py which supports line by line dataset. Remove return_special_tokens_mask=True and append labels column to tokens:

def tokenize_function(examples):
	# Remove empty lines
	examples[text_column_name] = [
		line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
	]
	tokens = tokenizer(
		examples[text_column_name],
		padding='max_length',
		truncation=True,
		max_length=1024
	)
	tokens['labels'] = tokens['input_ids'].copy()
	return tokens

with training_args.main_process_first(desc="dataset map tokenization"):
	tokenized_datasets = raw_datasets.map(
		tokenize_function,
		batched=True,
		num_proc=data_args.preprocessing_num_workers,
		remove_columns=[text_column_name],
		load_from_cache_file=not data_args.overwrite_cache,
		desc="Running tokenizer on dataset line_by_line",
	)

The trick is adding padding='max_length' parameter to the tokenizer.

The intuition behind this implementation is to replace group_texts by tokenize_function and padding each line by the tokenizer.

Full Code

The code is tested for: pytorch v1.9.0, transformers v4.12.2, datasets v1.11.0.

#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.

Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=causal-lm
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.

import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

import datasets
from datasets import load_dataset

import transformers
from transformers import (
    CONFIG_MAPPING,
    MODEL_FOR_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from transformers.data.data_collator import DataCollatorWithPadding


# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
#check_min_version("4.13.0.dev0")

require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")

logger = logging.getLogger(__name__)


MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=None,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_overrides: Optional[str] = field(
        default=None,
        metadata={
            "help": "Override some existing default config settings when a model is trained from scratch. Example: "
            "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
        },
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )

    def __post_init__(self):
        if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
            raise ValueError(
                "--config_overrides can't be used in combination with --config_name or --model_name_or_path"
            )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
            "value if set."
        },
    )

    block_size: Optional[int] = field(
        default=None,
        metadata={
            "help": "Optional input sequence length after tokenization. "
            "The training dataset will be truncated in block of this size for training. "
            "Default to the model max input length for single sentence inputs (take into account special tokens)."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    validation_split_percentage: Optional[int] = field(
        default=5,
        metadata={
            "help": "The percentage of the train set used as validation set in case there's no validation split"
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    keep_linebreaks: bool = field(
        default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            raw_datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        dataset_args = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = (
            data_args.train_file.split(".")[-1]
            if data_args.train_file is not None
            else data_args.validation_file.split(".")[-1]
        )
        if extension == "txt":
            extension = "text"
            dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir, **dataset_args)
        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
                **dataset_args,
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
                **dataset_args,
            )

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)

    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        model = AutoModelForCausalLM.from_config(config)
        n_params = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")

    model.resize_token_embeddings(len(tokenizer))

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    else:
        column_names = raw_datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
    tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")

    def tokenize_function(examples):
        # Remove empty lines
        examples[text_column_name] = [
            line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
        ]
        tokens = tokenizer(
            examples[text_column_name],
            padding='max_length',
            truncation=True,
            max_length=1024,
            # # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
            # # receives the `special_tokens_mask`.
            # return_special_tokens_mask=True,
        )
        tokens['labels'] = tokens['input_ids'].copy()
        return tokens

    with training_args.main_process_first(desc="dataset map tokenization"):
        tokenized_datasets = raw_datasets.map(
            tokenize_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=[text_column_name],
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset line_by_line",
        )

    if data_args.block_size is None:
        block_size = tokenizer.model_max_length
        if block_size > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --block_size xxx."
            )
            block_size = 1024
    else:
        if data_args.block_size > tokenizer.model_max_length:
            logger.warning(
                f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
                f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
            )
        block_size = min(data_args.block_size, tokenizer.model_max_length)

    # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
    def group_texts(examples):
        # Concatenate all texts.
        concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
        total_length = len(concatenated_examples[list(examples.keys())[0]])
        # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
        # customize this part to your needs.
        if total_length >= block_size:
            total_length = (total_length // block_size) * block_size
        # Split by chunks of max_len.
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result["labels"] = result["input_ids"].copy()
        return result

    # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
    # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
    # to preprocess.
    #
    # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
    # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

    # with training_args.main_process_first(desc="grouping texts together"):
    #     lm_datasets = tokenized_datasets.map(
    #         group_texts,
    #         batched=True,
    #         num_proc=data_args.preprocessing_num_workers,
    #         load_from_cache_file=not data_args.overwrite_cache,
    #         desc=f"Grouping texts in chunks of {block_size}",
    #     )

    lm_datasets = tokenized_datasets

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = lm_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = lm_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))


    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it.
        data_collator=default_data_collator
    )

    logger.info("*** raw_datasets/tokenized_datasets " + str(raw_datasets['train'].shape) + " / " + str(tokenized_datasets['train'].shape))
    logger.info("*** train_dataset shape: " + str(train_dataset[0].keys()) + "/" + str(train_dataset.shape) + "/" + str(len(train_dataset['input_ids'][0])))

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics

        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
        metrics["perplexity"] = perplexity

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()

References: # How to finetune GPT2 #1145